Pythonで学ぶAI活用入門

特別受講料: 22,000 円

一般受講料: 24,200 円

講座コード:E45

受講期間:3ヶ月

難易度:入門レベル 初級レベル

こんなコースです

実践的AI基礎講座―具体的に機械学習の概念と利用法がわかる

これからAIの活用を考えている技術者の方を対象とし、現在AIの代表的技術である機械学習に焦点をあて、どのようにプログラミングしていくのか、その概観を学ぶ講座です。
Python言語の機械学習ツールを利用して、ひととおり機械学習のプロセスを回す際に気をつけるべきポイントを解説します。

  • AIの概要を学び、機械学習の基本的な考え方、各手法の特徴とともに利用手順を学びます。
  • 「教師あり学習」と「教師なし学習」の概要―手順をPythonの機械学習ツールの利用例を通じて理解します。
  • ディープラーニングの概要とツールの利用例を学びます。

ねらいと特色

  • 機械学習の考え方や概念が、具体例を通して理解できます。
  • 豊富な事例で、代表的機械学習ツールであるPythonのscikit-learnの基礎的利用法がわかります。
  • ディープラーニングツールKerasの基本的利用法がわかります。
  • データをどのように識別していくのか、その方法を具体的に学びます。

教材構成

  • テキスト:1冊(電子ブック対応)
  • レポート回数:3回(Web提出可)
  • データダウンロードサービス

主な項目

No. 主 な 項 目
1
第1章 AIの概要

AIとは
AIの歴史
AI分野の俯瞰

第2章 機械学習の概要

機械学習とは
機械学習の要素
機械学習の分類
教師あり学習
教師なし学習
半教師あり学習
ディープラーニング
強化学習

第3章 機械学習の基本的な手順

機械学習の流れ
データセット
データフォーマット
前処理
次元の呪い
主成分分析による次元圧縮
バイアスとバリアンス
評価方法:クロスバリデーション
簡単な識別器:k-近傍法
評価指標
ROC曲線

第4章 Pythonによる機械学習の手順

プログラミング環境準備
仮想環境の構築
scikit-learnによる機械学習の基本的な流れ
K-近傍法によるIrisデータの識別
識別境界面の描画
近傍数kの影響

2
第5章 教師あり学習[1]
識別(1): 決定木学習

決定木学習の基礎
決定木学習によるIrisデータの識別実装例

識別(2): ナイーブベイズ分類器

統計的機械学習とは
MAP推定によるナイーブベイズ分類器
簡単な例
ゼロ頻度問題への対処
ナイーブベイズ分類器によるゴルフプレー識別実装例

識別(3) ロジスティック回帰

ロジスティック回帰の基礎
正則化による過剰適合の抑制
ロジスティック回帰による手書き文字認識実装例

第6章 教師あり学習[2]
識別(4): ニューラルネットワーク

ニューラルネットワークの基礎
効率的な学習テクニック
多層パーセプトロンによる手書き文字認識実装例

識別(5): サポートベクタマシン

サポートベクタマシンの基礎
入れ子の交差検証によるハイパーパラメータ調整
ハイパーパラメータ最適化
SVMによる乳がん診断データの識別実装例

回帰

線形回帰
線形基底回帰
ニューラルネットワークによる回帰
サポートベクタ回帰
回帰問題の評価指標
逐次特徴選択
各種回帰手法による住宅価格推定実装例

3
第7章 教師なし学習
クラスタリング

階層型クラスタリング
k-meansクラスタリング
ガウス混合モデル
自己組織化マップ(SOM)
クラスタリングの評価指標
SOMによるglassデータのクラスタリングと可視化実装例

異常検知

異常検知の基本的な考え方
評価指標
Local Outlier Factor
One-Class SVM
Isolation Forest
機器の振動データに対する異常検知実装例

第8章 ディープラーニング

ディープラーニングの概要
ディープラーニングと表現学習
AutoEncoderによる事前学習
Dropoutによる過剰適合の抑制
畳み込みニューラルネットワーク(CNN)
学習済みモデルの活用
時系列データの学習:RNNとLSTM
ディープラーニングツール
AutoEncoder+DNN,MLP,CNNによる手書き文字認識実装例